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Abstract-A study is made for two optical limits in a convective and radiative heat-transfer process for 
nongray gases flowing in a circular tube having a constant uniform wall temperature. The governing 
energy equations which are valid for the optically thin and the large path length limits are obtained for 
fully developed laminar flow with a non-black wall. Numerical results for the temperature profiles, local 
conductive, radiative and total heat fluxes are obtained and the validity of these limiting cases is discussed. 

NOMENCLATURE Subscripts 
total band absorptance [cm-‘]; cl, value at centerline; 
correlation quantity [cm- ‘I; 4 ith band; 
dimensionless total band absorptance, W, value at wall; 
AilAoi; a, wave number. 
specific heat at constant pressure [cal/g”K]; 
Planck’s function rcal/(h cn?)/cnY ‘1; INTRODUCTION 

thermal conductivity [Cal/cm h OK] ;- 
Nusselt number; 
gas pressure [atm] ; 
conductive heat flux [Cal/@.& h)]; 
radiative heat flux [Cal/(& h)]; 
total heat flux, = q’+ qR [cal/(cm’ h)]; 
dimensionless conductive heat flux, 
- q’R/kT,; 

dimensionless radiative heat flux, 
-qRRJkT,; 

dimensionless total heat flux, 

-W+qR)lkT,; 
radial coordinate [cm]; 
radius of the tube [cm]; 
temperature [“K]; 
bulk temperature PK]; 
dimensionless coordinate C$i Pr; 

dimensionless path length C$i PR; 

zl %; 

velocity in x direction [cm/s]; 
mean velocity in x direction [cm/s]; 
axial coordinate [cm]. 

Greek symbols 

4 angle; 

a, spectral absorptivity; 

89 angle; 

s, surface emittance; 

% dimensionless coordinate, r/R = Ui/Uoi; 

8, dimensionless temperature, 1 - T/T,; 

e b, dimensionless bulk temperature, 1 - G/T,; 

JcOn absorption coefficient of wave number o 
[cm-‘]; 

A4 cos cc; 

P> density [g/cm’] ; 
7, optical thickness. 

THE STUDY of simultaneous convective and radiative 
heat transfer in a cylindrical geometry has become 
increasingly important due to recent interest in heat- 
transfer calculations involving many high temperature 
systems, such as modem propulsion systems, plasmas, 
power plants, etc., where most of the flow geometries 
we are dealing with are cylindrical. Landram et al. [l] 
have investigated the heat transfer in turbulent pipe 
flow with optically thin radiation subjected to a 
constant wall heat flux. Later, the same subject was re- 
examined experimentally and theoretically by Habib 
and Greif [2] without the restriction to optically thin 
gases. In a previous paper [3], we have investigated 
the heat transfer in the fully developed laminar flow of 
gray and nongray radiating gases in a cylindrical tube 
having a uniform wall temperature for a wide range of 
optical thickness. Two methods were employed for 
solving the energy equation in [3]. The first method 
was to expand the dimensionless temperature function, 
@, appearing in the radiative flux into a Taylor series, 
retaining only the first three terms. This procedure 
makes it possible to reduce the energy equation from a 
non-linear integrodifferential equation to a non-linear 
differential equation which was in turn solved numeri- 
cally by an iterative procedure. The second method was 
an integral method with a linearized approximation 
(this approximation is valid only if the temperature 
variation throughout the system is small). In both 
methods, it was found that the required numerical 
calculation was quite tedious. The purpose of the 
present paper is to investigate two limiting cases in 
which simple approximations can be introduced for the 
radiative term in the energy equation. For the purpose 
of establishing the limits of validity and the accuracy 
of these limiting formulations, comparisons will be 
made with the results obtained in [3]. The particular 
gases considered for this work are carbon monoxide, 
carbon dioxide, water vapor and methane. 
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FORMULATION OF THE PROBLEM 

The physical model and coordinate system used in 
the present study is illustrated in Fig. 1. Let’s consider 
an absorbing and emitting, but non-scattering gas 
hav’ing a fully developed velocity profile in a circular 

tube. The tube walls may be black or gray, and are 
considered to have isothermal, diffuse reflectors and 

emitters. The fow is steady, and the gas is assumed to 

be an isotropic, homogenous medium in local thermo- 
dynamic equilibrium. which can absorb and emit 

thermal radiation in a diffuse manner. A radiation field 

in an absorbing medium definitely affects the motion 

and the temperature distribution. This is due to the 
presence of a radiation pressure, a radiation energy 

density, and a radiation heat flux. For temperature 
levels utilized in this work, the radiation pressure and 
energy density are negligible compared with the mole- 
cular momentum flux and themolecular energy density, 
respectively. Therefore, the effect of the radiation heat 

tlux is the only contribution from the thermal radiation. 
Under the assumption that the fluid has constant 

transport properties and constant density, the energy 
equation in integral form for the nongray gas with fully 
developed laminar flow has been derived and is given in 

[3, 41. For the convenience of the reader, they are 

reproduced below. 

where 

x da’ du. 

FIG. 1. Physical model and coordinate system. 

In the above, A{(y) is the derivative of ;ii(y) with respect 

to y and 

F(rf, fl) = ($ -sin2 fi)“’ 

[“P, 9 .P = F(r], p) - F(r/’ p) > > [“‘.I$ = WV’> P) - W, P) 

r$! = Jw’~ PI+ WL PI> ;$$. = F(l,P’)+F(rl’,f!Y) 

CJ= F(l,/I)+F(q,B)...etc. 

and the Nusselt number based on the total heat-transfer 
rate is defined as: 

Nu _ hD _ ‘$;) 
k w b 

(2) 

where q:(x) is the total heat flux at the wall to be 
determined. It is worthwhile to state the assumptions 
and to summarize the procedure used in the derivation 

of (1). Equation (1) has been derived for the thermally 
fully developed case. This statement means that the 

dimensionless temperature profile, (T, - 7’)/( T, - Ii,), is 
invariant with x. Furthermore, the total radiation flux, 
the right hand side of (1) is obtained by integrating 

the spectral radiative flux, equation (5) of [3], over the 
band width AOi: 

y; ZZ 
St 

em 4% dw for the ith band, and qR = i qf 
i=l 

where I is the number of bands. In the integration of 

q?, it is often convenient to use the total band 
absorptance Ai, which is defined as the integral of the 
spectral absorptivity, u, over the width of the band, 
AOi, in the following manner: 

A(y)= jAo,g~cjjd~= ~~~,,,[l-eXP(--h.Y)]dU). (3) 

The function A may be expressed by the exponential 
band model [S] as 

Ai = AOiln {kfCQ[&] + I) C4) 

where 

Ui = Cai Pr, fi = [C$i/(4Cti C3i)]Pp = B,?Pe* 

f(ti) = 2’94[1 -exp( -2.6tJ]. 

The quantity Bf characterizes the effect of pressure 
broadening, since Bf is proportional to the rate of the 
line width to line spacing. The band width parameter, 
Aoi = C3i, is a function of temperature only. The 
quantity ti is the line structure parameter, and P, is the 
effective broadening pressure, given by 

P, = [(Pk + bP,)/P,]“, PO = 1 atm 
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where P, is the absorbing gas partial pressure, Pk is the 
broadening gas partial pressure, and b is the self- 
broadening power of the u-molecule with respect to the 
k-molecule. The pressure parameter, n, which is always 
less than or equal to unity, accounts for the partial 
overlapping of bands with different lower states. The 
quantities b and n are estimated experimentally by 
using various gas compositions. The values of the corre- 
lation quantities Cl;, C’zi, CJi. &i, Cg< and Bf, for 
several gases arc available in the literature [6]. 

In equation (l), we have also linearized the radiative 
flux equation by a restriction of moderately smalt 
temperature differences within the gas. The Planck 
function, c,,i(7), may therefore be written as 

The numerical solutions of equation (1) for wide range 
of optical thickness were carried out and reported in [3]. 
In this paper, a study is presented on the two limiting 
cases in this heat-transfer problem. These two cases 
represent the optically thin and the large path length 
limit. 

OPTICALLY THIN L,IMIT 

For small uoi, i.e. ~0; << 1. Ai = Uir ;i:- = 1, the 
optical thin form of the energy equation becomes 

r/g + 2Nu j’-~‘“)Q($)d~’ = ;N ‘In 
s s.-’ 

‘Icosfidj 
0 

It readily follows that the dimensionless parameter, N, 
characterizes the relative importance of radiation vs 
conduction *within the gas. For particular values of P 
and R, it is actually the dimensionless gas property 

(7) 

which denotes the relative importance of radiation to 
conduction. It should be emphasized that this quantity 
characterizes the radiation-conduction interaction 
only in the optically thin limit. 

It should also be noted here that, under optically 
thin conditions, the effect of surface emittance upon 
the radiative transfer vanishes. Under optically thin 
conditions the photon mean free path is much larger 
than the characteristic physical dimension. Corres- 
pondingly, photons emitted by a given fluid element 
will travel directly to the bounding surfaces, and any 
intervening absorption of photons by the fluid will be 
negligible. Therefore, the surface radiosity is evaluated 
as if the gas were completely transparent, and since 
this corresponds to an isothermal enclosure for the 
present problem, the surface radiosity is equal to the 
black radiation irrespective of the value of the surface 
emissivity. 

Equation (5) does not appear to possess a closed form 
solution even with simplification, Thus a numerical 

solution has been obtained by assuming a temperature 
profile of the form 

O(q) = 5 c12”YJ2”. 
n=O 

Such a profile can be made to satisfy M’+ 1 conditions 
in order to determine the unspecified constants urn’s 
With this form of the temperature profile, the boundary 
condition at q = 0 is automatically satisfied, but that at 
the wall may be written as the equation: 

*tO urn = 0. 

In addition, M’ more conditions can be imposed. 
Probably the simplest procedure is to satisfy equation 
(5) at M’ discrete points, r/i. The values of vi were 
chosen as equally spaced points from the center of the 
tube to the wall, excluding the point at the wall. The 
specification of the centerline or bulk temperature is 
also required. This procedure is then followed by the 
iteration scheme. A value of the Nusseh number is 
assumed and the az,,‘s are then found by the above 
mentions procedure. With the resultant tem~rature 
profile, the total heat flux at the wall and the Nusselt 
number are recalculated by equation (2). This procedure 
will be repeated until the assumed Nusselt number and 
the recalculated Nusselt number are matched within the 
difference of 10e4. 

Numerical solutions of equation (5) for the optically 
thin approximation are illustrated in Fig. 2 for a range 
of the radiation-conduction interaction parameter N. 

FIG. 2. Effect of parameter N on tempera- 
ture profile for optically thin limit. 

The fully developed temperature profile, (T,- T)/ 
(Tw-- &) has been chosen as one of the coordinates in 
Fig. 2, so that the profile is invariant with axial direc- 
tion. Furthermore, with N as a parameter, the tempera- 
ture profile for the optical thin limit will not depend 
on the type of gas. The quantity N for individual 
gases may be obtained by equation (6) using the correla- 
tion quantities, which are available in the literature for 
several gases [6]. For purposes of comparison, the 
tem~rature distribution for non-r~iating gas has also 
been included. It is seen that the temperature field 
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departs more and more from that of the pure conduc- 
tion and convection case as the parameter N increases. 
If one plots T/T, vs v, the temperature profile will 
increase with increasing N. This is physically justifiable, 
since increasing N can be interpreted as increasing the 

heat transfer from the wall to the gas due to the 
radiation contribution, and the resulting profile departs 

more from that for conduction and convection alone. 
The local variation of conductive, radiative, and the 

sum of both energy fluxes has been plotted for selected 
values of parameters in Fig. 3. Inspection of the figure 
reveals that when the parameter N increases, only the 

change of the radiative heat flux becomes significant, 

0.0 02 04 0.6 0.6 10 

TJ=r/R 

FIG. 3. Variation of local conductive, radiative, and total 
heat fluxes with dimensionless radius for optically thin limit, 

T,,/Tw = 0.9. 

with very little change occurring in the conductive flux. 

In the vicinity of the tube wall, the conductive flux for 
the radiating gases is less than that of non-radiating 
gas and the conductive flux decreases with increasing 

N. This implies that the temperature gradient in the 
vicinity of the wall decreases with increasing N and this 

trend holds up to q - 0,6. For q < 0.6, the above state- 

ment reverses. 
It is of interest to compare the temperature and 

heat-transfer results predicted from the optically thin 
approximation with those obtained by the band 
absorptance model, equation (l), and to consider a 
range of the optical thickness, uo, over which to apply 
the optically thin approximation. The heat-transfer 

results obtained by equation (1) are compared with 
those from the optically thin approximation in Table 1 
for CO and in Table 2 for CH4 and H20. As seen from 

Table 1, the difference in the quantities listed between 
the optical thin approximation and the band absorp- 
tance solution for u. = 2.27 is quite large. Thus, the 
optically thin approximation is not suitable for this 
condition. However, for u. = 0.114, i.e. for uo << 1, 
agreement between the two results is very good, and 
this again confirms the criterion required to apply this 
approximation. For CH4 and HzO, the optical thick- 
nesses of which are 0.41 and 0.26, respectively, the 
agreement between the two results in both cases is 
good, being within a maximum error of 1.07 per cent, 
except for QE where there are discrepancies of 10 per 
cent for Hz0 with u. = 026 and 69 per cent for CH4 

with uo = 0.41. The results of Tables 1 and 2 also 
illustrate that either a lower pressure or a shorter tube 
radius could be chosen to apply the optically thin 
approximation at a fixed wall temperature. 

Table 1. Comparison of results for CO (2-bands): T, = 
1140”K, T,, = 1060°K 

P = 1 atm R = 2.54cm P = 0.1 atm R = 1.27 cm 
__.- 

Optically Band Optically Band 
thin approx. model thin approx. model 

(5) (1) (5) (1) 
____~___ 

07% 0.035 0 0,038 0 0.038 8 0038 9 
*(0,039 0) (0.039) 

QZ 0135 7 0,042 7 0.003 9 00039 
PO) (0.0) 

QZ 0.053 8 0071 2 0070 6 0.071 1 
(PO71) (0071) 

QZ 0189 5 0,113 9 0,074 5 0075 0 
(0.071) (0.07 I) 

NU 10.817 5,996 3.840 3.866 
(3.657) (3.657) 

uo 2.27 2.27 0114 0.114 

N 4.142 0,104 

*Numbers in the parenthesis indicate the values for pure 
conduction and convection. 

Table 2. Comparison of results for CH4 (Z-bands) and Hz0 
(5-bands): P = 0.3 atm, R = 0,635 cm, AT = 100 “K 

CH, (2-bands) Hz0 (S-bands) 
___ ____. 

Optically Band Optically Band 
thin approx. model thin approx. model 

(5) (1) (5) (1) 

TJK) 750 750 1050 1050 

OTb 0.073 8 0.073 9 0.052 7 0.052 7 
*(0.074 0) (0.052 8) 

Q!Z 0.004 4 0.002 6 0.005 3 0.004 8 
(0.0) (0.0) 

Q: 0.134 6 0.135 0 0.095 9 0.096 0 
(0,135 2) (0,096 6) 

QZ 0.139 0.137 6 0.101 2 0.100 8 
(0.135 2) (0,096 6) 

NU 3.766 3.726 3.840 3.826 
(3.657) (3.657) 

uo 0.41 0.41 0.26 0.26 

N 0.062 0,104 

*Numbers in the parenthesis indicate the values for pure 
conduction and convection. 

It is also seen that under the optically thin limit, the 
interaction parameter N is very small. In other words, 
conduction dominates over radiation as a heat-transfer 
mechanism, and thus the resulting temperature profile 
is close to that for pure conduction and convection. 
The optically thin approximation also predicts a 
smaller gradient and a larger radiative flux than that 
obtained by the band absorptance solution at the wall. 
In general, it also predicts a slightly lower mean 
temperature. 

As discussed above, there certainly exists a condition 
for the optically thin limit for some gases in the physical 
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system considered here, and for such asystem under this 
limit the optically thin approximation is expected to 
predict reasonably accurate heat-transfer results. In 
summary, it is recommended that for engineering 
applications, the optically thin approximation, equation 
(5) may be used for the calculation of heat transfer 
when u. < 0.4, but to obtain a radiative heat flux within 
an accuracy of 10 per cent, uo < 0.25 is recommended. 
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The absence of the line structure quantity Bf is 
obvious because the line structure of the band plays no 
role when radiative transfer occurs solely in the wings 
of the band. Since the individual band intensities 
correspond to Aoi Ca, the absence of C$i illustrates that 
the radiative transfer process is independent of the 
band intensities in the large path length limit. This is 
physically reasonable, since the central portion of the 
band does not contribute to radiative transfer in this 
limit. 

THE LARGE PATH LENGTH LIMIT 

The conventional optically thick (or Rosseland) limit 
does not apply to infrared gaseous radiation. The 
reason for this is that the rotational line intensity 
approaches zero asymptotically in the band wings, 
such that regardless of the physical dimensions, there 
will be optically non-thick radiation occurring in the 
band wings. In other words, the band wings will 
constitute regions for which there will be a continuous 
transition from opaque to the transparent limit. 

For vibration-rotation bands, even though the 
Rosseland equation is inapplicable, a large path length 
limit does exist and is achieved when Uoi >> 1 for each 
band of importance. In this limit ai = ln(ni) and 
ii: = l/ni such that their substitution in equation (1) 
gives 

x 6B1 d$ da’ (8) 

where 
n/2 

s s 

n/2 

&hB,?',B') = cosa'cos2a 

.'=O ol=o 

where 
x da’ da 

(9) 

The dimensionless parameter M constitutes the 
radiation-conduction interaction parameter for the 
large path length limit. Inspection of equation (8) 
reveals that only Aoi of the three correlation quantities, 
Aoi, Cs, and BF, remains through the definition of M 
as defined above. 

A further simplication associated with equation (8) 
is that the temperature profile within the gas is 
independent of the pressure. This is not the case with 
the general formulation, equation(l), for which pressure 
appears both in the dimensionless band path length 
noi and in the line structure parameter t. 

Numerical solutions of equation (8) for the large path 
length limit have been carried out for a range of the 
radiation-conduction parameter, M. Since the integral 
on the r.h.s. of equation (8) possesses a singularity at 
r] = 1, a temperature profile of the form 

e(V) = 5 &n2”(l -V2) 
n=o 

has been assumed and a similar procedure as described 
in the previous section has been followed to obtain the 
numerical results. For the sake of convenience and 
brevity, the results are presented only for the case of a 
black bounding surface. It should be emphasized that 
the interaction parameter, M, as defined in equation 
(9), characterizes the relative importance of radiation vs 
conduction only for the large path length limit. 

Figure 4 shows the effect of the interaction parameter 
M on the temperature distribution. When the para- 
meter M increases, the temperature distribution departs 
from that of a non-radiating gas, as would be expected. 

Comparison of the results between the band absorp- 
tance and the large path length limit for CO2 and CHL, 
and CO gases are shown in Figs. 57 for a tube radius 
of 2.54~~1 and wall temperatures of 500, 700 and 
lOOO”K, respectively. In order to make the comparison 
more effective, we have chosen 0 as one of the co- 
ordinates rather using the fully developed temperature 

FIG. 4. Effect of parameter M on tempera- 
ture profile for large path length limit, 

E = 1.0. 
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profile. For these comparisons, only the increment of 
pressure was considered to achieve a large ~6, although 
the large ua limit can be obtained either by going to 
larger values of R or to higher pressure. As explained 
earlier, the temperature profile obtained by the large 
path length approximation is invariant with pressure. 

For COz, it is seen from Fig. 5 that at a wall 
temperature of 500 “K, the agreement between the mean 
temperature results obtained by the band absorptance 
and the large path length limit is very good. At the 

020 

000 
00 02 0.4 06 OS 10 

,"lR 

FIG. 5. Comparison of temperature pro- 
files for CO2 (3-bands) with R = 2.54cm, 

Tw-T,[ = 100°K and 6 = 1.0. 

condition of 1 atm pressure shown, the optical thick- 
ness, uo, is about 158, and it satisfies the criterion for 
this approximation, i.e. uo >> 1. Even for a wall tempera- 
ture of 7OO”K, the agreement between the two results is 
good. For a wall temperature of 1000 “K, however,, the 
difference between both the temperature distributions 
and the mean tem~rature for the two cases is appreci- 
able at a pressure of 1 atm. As the pressure increases, 
the mean temperature resuhs approach those obtained 
by the large u. limit, and it can be seen that the large 
length limit is essentially a limiting solution for large 
pressure. However, the striking feature is that the effect 
of pressure is to raise the temperature in the cold 
region and to lower the temperature in the hot region. 
causing the mean temperature results to approach 
those obtained by the large no limit. It should be 
emphasized that the large path length limit, as treated 
in this work, is not an exact asymptotic limit since it 
makes use of the logarithmic asymptote for the band 
absorptance which in itself is an approximate limiting 
expression. Similarly, for the large path length limit. we 
may obtain analogous results concerning the heat- 
transfer process. 

The corresponding results for CH4 and CO are 
shown in Figs. 6 and 7, respectively, and once again they 
show that the large path length limit is a limiting 
solution for high pressures. For the case of a wall 
temperature at 500°K and a pressure of I atm, the 
agreement between the two mean temperature results is 
very good as we11 as the individual temperature profile, 
unlike the case of CO2. 

From an evaluation of the entire results, it may be 

015 
= .301m(uo=49) 

c* 

6 '3 0.10 

t 
,t 
0 

005 

000 
00 0.2 04 0.6 09 10 

FIG. 6. Comparison of temperature pro- 
files for CN4 (2-bands) with R = 254cm. 

TM, .- T,, = 100°K. and c = I Al. 

0.00 
00 0.2 0.4 06 0,8 

?=r,R 

FIG. 7. Comparison of temperature pro- 
files for CO (2-bands) with R = 2.54cm, 

T,- T,{ = 100°K and x = I .O. 

concluded that the largepath length limit constitutes an 
upper bound upon the influence of radiation transfer 
on the temperature profile within a gas. However, it 
should be mentioned that the range of the optical thick- 
ness to apply the large path length limit approximation 
is different for different gases. For instance, in the case 
of CO with T, = 7OO”K, and P = IOatm, i.e. u. = SO, 
the result obtained by the large path length limit is 
good within a maximum error of 2 per cent, while for 
COz with T, = lOOO”K, P = 1 atm, i.e. no z 51, the 
result is good only within a maximum error of 9.6 per 
cent. For the same accuracy of the result, therefore, 
higher path length should be accounted for COz. 

VARIATION OF THE CENTERLINE TEMPERATURE, 
BULK TEMPERATURE AND HEAT FLUS 

IN THE AXIAL DIRECTION 

The governing differential equation (I) is valid at a 
specific axial position and the knowledge of the varia- 
tion of centerline temperature (with assumed initial 
value), bulk temperature and total wall heat flux along 
the axial direction x is required for heat-transfer calcu- 
lations to be made. ‘To obtain this information, with 
assumed T,I (or Th) at a specified section x (or initial 
location corresponding to .X = O), the governing equa- 
tion can be solved for Band hence for & at that section 



Heat transfer with nongray gases 

as described in the previous discussion. The value of Tb 
at the next section is then obtained by integration of 
the following equation: 
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To illustrate the use of Figs. 8 and 9 and to get some 
information about heat transfer for a specific system, we 
will consider simple examples. It was shown that the 
optically thin approximation for CO at P = 0.1 atm, 
R = 1.27 cm, T,, = 1060”K, and T, = 1140”K, as illus- 
trated in Table 1, predicts reasonably accurate heat- 
transfer results. Let’s consider the same physical 
conditions but with the different centerline temperature 
of T,, = 1026°K. With these conditions, we have 
ecr = 0.1 and the interaction parameter N may be 
calculated by equation (6) as 0.104. With these values 
of N = 0.104 and Bcl = 0.1, we then obtain <’ = 0.55 
from Fig. 8, and the total heat flux is obtained from 
Fig. 9 as 

dT, 29x4 --- 
dx- Rvtn PC, 

which is derived by making an energy balance on an 
elemental slice of fluid. The new T,, can then be readily 
calculated by the fully developed criterion. In this 
manner, the complete solution of the governing equa- 
tion can be generated. For the optically thin and large 
path length limits, the results are illustrated in Figs. 8 
and 9, in which the dimensionless axial distance is 
defined as 

where 

5’ = K”x (11) 

K” = ____ 

pCp:R2' 

In both cases, the centerline temperature at 5’ = 0 (or 
x = 0) was assumed to be 0.3. 

- Large Path Length Limit 

---- Optically Thin Limit 

i 

0.0 1 
-60 03 0:6 0:s 1:2 1.k 

E’ =K*x 

FIG. 8. Variation of centerline temperature with axial 
distance for optically thin and large path length limits. 

1.0 

- Large Path Langth Lid 

---- Optically Thm Limct 

I 

FIG. 9. Variation of total wall heat flux with axial distance 
for optically thin and large path length limits. 

Q; = 0.11 

or 

q: = 49 Cal/cm’ h (or 180 Btu/ft’ h). 

Similarly, for the large path length limit, we may obtain 
analogous results concerning the heat-transfer process. 

CONCLUDING REMARKS 

Numerical results for the optically thin and large 
path length limit are obtained for the nongray gases 
HzO, CH.+, CO* and CO flowing in a circular tube 
having a constant wall temperature. It is found that the 
optically thin approximation may be used for the calcu- 
lation of heat transfer within reasonable accuracy when 
the dimensionless path length, uo, is less than 0.4. For 
the large path length limit, no general criterion can be 
drawn for the applicability of this limit. The range of 
the optical thickness to apply the large path length 
limit approximation is different for different gases. 
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ETUDE DE DEUX CAS LIMITES DU TRANSFERT THERMIQUE PAR 
CONVECTION ET RAYONNEMENT DANS DES GAS NON-GRIS 

R&sum&Une ktude de transfert thermique par convection et rayonnement est effectuke pour deux limites 
optiques dans des gaz non-gris s’koulant dans un tube circulaire avec tempkrature de paroi uniforme. 
Les kquations fondamentales d’knergie, valables dans les deux limites des milieux optiquement minces et 
optiquement ipais, sont obtenues pour l’kcoulement laminaire ktabli avec une paroi non noire. On a 
obtenu des risultats n’umbiques relatifs aux profils de tempbature, aux flux locaux de conduction et de 

rayonnement et aux flux totaux; le domaine de validitk de ces cas limites est discutk 
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DIE UNTERSUCHUNG ZWEJER GRENZFALLE DES WARMEUBERGANGS 
DURCH KONVEKTION UND STRAHLUNC IN NICHTGRAUEN GASEN 

Zwammenfassung-Der WBrmedbergang durch Konvektion und Strahlung an nichtgraue Gase, die 
durch ein Rohr mit konstanter Wandtemperatur str6men, wird fiir zwei opt&he Grenzfille untersucht. 
Die den Vorgang beschreibenden Energiegleichungen, die fiir die Grenzfslle der kleinen und grol3en 
opt&hen Wegldngen giiltig sind, werden fiir den Fall der voll ausgebildeten laminaren Strsmung mit 
einer nichtschwarzen Wand aufgestellt. Fiir die Temperaturprofile, die b;rtlichen WBrmestrb;me durch 
Konvektion und Strahlung und die GesamtwHrmestrcme werden numerische Ergebnisse angegeben. Die 

Giiltigkeit der beiden Grenzfslle wird diskutiert. 

MCCnEflOBAHME ABYX IIPEnEJIbHbIX CJIYYAEB KOHBEKTMBHOrO 
M JIYYMCTOI-0 I-IEPEHOCA TEIIJIA B HECEPbIX I-A3AX 

AHHoTaqaa- kkC,TenyeTCR nBa npenenbHblX CJIy'iaSl KOHBeKTHBHOrO H JlyYRCTOrO TennOO6MeHa 

Hecepblx ra3OBnpM TeYeHUH B KO~bUeBO~Tpy6eCnOCTO~HHO~O~HOpO~HOiiT~Mnep~TypOiiCTeHK~. 

~~~C~~yr~~nO~HOCTbtopa3BMTOrO~aMIlH~pHOrOTe~~HHRnp~Ha~~~A~He~epHO~CT~HKIiBbIBeLI~HbI 

onpenennwzunie ypasHetnffl3HeprMA,cnpaBennciBble nn~ npenenbHblx cnyraeB 0nTwiecKki Manblx H 

6onbruexnnMHnpo6era.~Ony~eHbr~ACneHHblepe3ynbTaTbInnnnpO~ane~TeMnepaTy~bInnOKanb- 

HblX 3Ha'ieHMil KOHAyKTMBHOrO, nyWCTOr0 M CyMMapHOrO TennOBblX nOTOKOB iI PaCCMOTpeHa 

cnpaeennMBocTb yKa3atwbrx npenenbHbrxcny9aeB. 


